ecomaine
Organics Recycling Feasibility Study

Andrew Carpenter, *Northern Tilth* – Belfast, Maine
The Northern Tilth Team

Northern Tilth
Andrew Carpenter
Project Manager

Northern Tilth
Andrew Carpenter

Coker Composting and Consulting
Craig Coker

Integrated Waste Management Consulting
Matt Cotton

Tech Environmental
Mike Lannan, P.E.
Dana Buske, PhD
Waste Composition

- Use existing data to provide an informed estimate of the waste composition that ecomaine is currently receiving
 - No new research, but a reconciliation of existing knowledge, nationally and locally
 - Account for organics collection programs in place, including Resurgam, institutional, and drop off programs and leaf and yard waste collection already in place
- Report will include high and low range estimates and influence of processing choice on potential diversion rates

Existing Collection Systems

- Determine the current capacity for organics collection with haulers that are servicing ecomaine communities
MSW Composition from 2011 U Maine Study

Organics, 43%
Paper, 26%
Other, 6%
Plastics, 13%
Metals, 3%
Glass, 3%
C&D, 3%
HHW, 2%
Electronics, 1%

2010 U.S. Total MSW Generation (by Material)
250 Million Tons (Before Recycling)

Organics, 27%
Paper, 29%
Other, 3%
Plastics, 13%
Metals, 9%
Glass, 5%
Wood, 6%
Rubber, leather, textiles, 8%
TASK 2 - Collection Systems
 TASK 3 - Technology Alternatives Evaluation

• Organics recycling = biological manufacturing
 – Inputs – food scraps, green wastes, organics portion of the MSW stream
 – Outputs – recovered energy (biogas), soil amendments (composts)
 – Byproducts – heat, water vapor, CO$_2$ (biogenic)

• Goal
 – Produce the desired amount of marketable product(s) at the needed rate at the lowest cost
Composting/Aerobic Digestion Process Flow Diagram

Facility activities

Collect Feedstocks

Feedstock receipt → Non-compostables

Feedstock preparation, mixing → Anaerobic Digestion

Active Composting

Curing

Screening

“Overs”

Monitoring

Product analysis

Product sales, distribution and use

Odor control

Biogas → Electricity, Heat

Composting/Anaerobic Digestion Process Flow Diagram

Facility activities

Collect Feedstocks

Feedstock receipt → Non-compostables

Feedstock preparation, mixing → Anaerobic Digestion

Active Composting

Curing

Screening

“Overs”

Monitoring

Product analysis

Product sales, distribution and use

Odor control

Biogas → Electricity, Heat

Composting/Anaerobic Digestion Process Flow Diagram

Facility activities

Collect Feedstocks

Feedstock receipt → Non-compostables

Feedstock preparation, mixing → Anaerobic Digestion

Active Composting

Curing

Screening

“Overs”

Monitoring

Product analysis

Product sales, distribution and use

Odor control

Biogas → Electricity, Heat
Composting

Approach selection depends on:
- Risk tolerance
- Feedstock
- Budget
- Site and neighbors

Approaches vs. technology risk/costs:
- Static Pile vs. Turned Windrow vs. Aerated Static Pile vs. In-vessel
Open-air Windrow

Aerated Static Pile

In-Vessel
TASK 3 - Technology Alternatives Evaluation

• Anaerobic Digestion (AD)
 – A resource extraction step prior to composting
 – Approaches
 • Traditional Liquid Digester – wastewater plants
 • High Solids Slurry Digester – e.g. OWS/Dranco
 • Dry Fermentation Reactor – e.g. BioFerm
Site Evaluations to Focus on
- 2 parcels owned by ecomaine
- Opportunities and limitations as they relate to permitting
- Practical considerations including potential odor receptors, air quality, truck access and infrastructure
- Expansion opportunities for existing organics processing facilities – partnering options
TASK 4 - Siting Evaluations
TASK 4 - Organics Processing in ecomaine service area

- Some capacity is already in place for organics processing, and it is continuing to grow
- We will provide an estimate on current and future capacity
WTE Changes Related to Organics Diversion

Net Energy Comparisons for ..

- The existing WTE process
- The “new” WTE process with diversion
- The new WTE process - Waste stabilization
- The new WTE process + Anaerobic Digestion Process - Waste stabilization

WTE Diversion Considerations...

- Changes to Criteria Pollutants:
 - Nitrogen oxides
 - Particulate
 - Sulfur dioxide
- Formation of dioxins and furans
- Increased Corrosion potential
Guidance on Final Product
• Quality, Quality, Quality
• USCC Compost Seal of Testing Assurance
• Risk Reduction through production management and rigorous testing program

Existing Market and Estimates of Value
• Realistic approach to the potential markets for the finished compost
• Don’t assume that the first year of composting will produce a high-end compost for bagging
TASK 6 – Market Evaluation: Biogas

Uses

- Electricity production
- Natural gas pipeline injection
- Compression for vehicle fuel

Considerations

- **ecomaine** only gets $0.039/kWh for WTE electricity production in FY13
- Pipeline gas – low natural gas prices (and expected to stay low)
- Vehicle fuel – Some Metro buses and school buses already converted – expansion opportunities?
TASK 7 - Organics Plan & Economic Analysis

• Based on work from Tasks 1 through 6, we will develop up to 6 configurations of collection, processing and marketing organics recycling systems, including a macroeconomic level analysis of the configurations

• After workshop with ecomaine representatives, we will select one configuration and develop a Conceptual Organics Recycling Plan

• Plan Components
 – Recommended SSO diversion/collection strategy
 – Recommended SSO processing system
 – Recovered product(s) markets
 – Site layout & manufacturing process flow
 – Process steps sizings
 – Equipment and Utilities Plan
Economic Analysis

- **Capital Cost Estimate**
 - Site development
 - Utility infrastructure (power/data, water, sewer, storm water)
 - Facility construction
 - Equipment

- **Operating Cost Estimate**
 - Purchased feedstocks (if needed)
 - Labor
 - Maintenance
 - Power/Fuel
TASK 8 - Final Report and Presentations

- Final report to include
 - Summary of findings from each task in the feasibility study
 - Conceptual Organics Recycling Plan
 - Stand-alone summary of the organics plan including
 - Facility plan level costs
 - Rationale for technology choices
 - Summary of national and international programs with similar operations and constraints
 - A summary of permitting requirements for implementing the plan
 - Risks related to the plan and how they will be addressed
 - Detailed recommendations for initiating the program, from pilot to full scale implementation

- The Northern Tilth team will develop and give a presentation summarizing the findings from all of the steps from the feasibility study and a thorough explanation of the organics recycling plan
 - The presentation will be designed for ecomaine Board members and other important stakeholders
Proposed Project Schedule

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Waste Composition & Current Status</td>
<td>12/10/2012</td>
<td>3/1/2013</td>
<td>60d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Feedstock Collection Plan</td>
<td>1/14/2013</td>
<td>4/5/2013</td>
<td>60d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Technology Alternatives Evaluation</td>
<td>1/28/2013</td>
<td>3/29/2013</td>
<td>45d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Siting Analysis</td>
<td>3/4/2013</td>
<td>4/19/2013</td>
<td>35d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>WTE Plant Impacts Analysis</td>
<td>3/4/2013</td>
<td>4/19/2013</td>
<td>35d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Markets Evaluation</td>
<td>4/22/2013</td>
<td>5/31/2013</td>
<td>30d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Conceptual Organics Recycling Plan and Economic Analyses</td>
<td>5/13/2013</td>
<td>6/21/2013</td>
<td>30d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Final Report & Presentations</td>
<td>6/21/2013</td>
<td>7/12/2013</td>
<td>16d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Northern Tilth Team

- ecomaine, Project Manager
- Northern Tilth, Andrew Carpenter, Project Manager
- Northern Tilth, Andrew Carpenter
- Coker Composting and Consulting, Craig Coker
- Integrated Waste Management Consulting, Matt Cotton
- Tech Environmental, Mike Lannan, P.E.; Dana Buske, PhD

- Waste Composition and status of Organics Collection and Diversion
- Site Evaluations
- Compost/Digestate Market Evaluations
- GHG Emissions Analysis
- Facility Plan
- Final Report and Presentations
- Technology Alternative Evaluations
- Biogas Market Evaluations
- Facility Plan
- Economic Analyses
- Final Report and Presentations
- Feedstock Collection Alternatives
- WTE Impact Analysis
- Air Quality Impact Analysis
ecomaine
Organics Recycling Feasibility Study

Questions?